Biography

Amanda Smith works with start-ups, global companies, and research institutions to build and strengthen their patent portfolios. She focuses on clients in the medical device, diagnostics, bio-microelectromechanical devices, biomaterials, biotechnology, and textiles industries, and enjoys collaborating with inventors to share in the excitement of their new ideas. Her practice includes patent preparation and prosecution before the U.S. Patent Office, patentability and inventorship analyses, and reissue applications. Drawing on her experience as a former patent examiner, Amanda navigates the patenting process with an insider’s perspective.

Amanda also helps clients optimize their R&D programs within their industry’s IP landscape. This includes investigating their freedom to operate and reviewing pre-existing patents in their field.

Before entering patent law, Amanda spent ten years in academic research on regenerative biomaterials and stem cell biology, publishing peer-reviewed manuscripts, securing extramural funding, delivering podium presentations, and collaborating with physician-scientists to translate therapies from the lab bench to the clinic.

Education

Vanderbilt University, B.E., Biomedical Engineering, magna cum laude

Washington University, PhD, Biomedical Engineering

Emory University, Post-doctoral training

Georgia State University, J.D.

Admissions

  • U.S. Patent and Trademark Office
  • Technologies

  • Publications & Presentations

    • Agarwal, U., Smith, A.W., French, K.M., Boopathy, A.V., George, A., Trac, D., Brown, M.E., Shen, M., Jiang, R., Fernandez, J.D., Kogon, B.E., Kanter, K.R., Alsoufi, B., Wagner, M.B., Platt, M.O., Davis, M.E. Age-Dependant Effect of Pediatric Cardiac Progenitor Cells After Juvenile Heart Failure. Stem Cells Translational Medicine. 2016; 5(7): 847-979.

    • Boopathy, A.V., Martinez, M.D., Smith, A.W., Brown, M.E., Garcia, A.J., Davis, M.E. Intramyocardial Delivery of Notch Ligand-Containing Hydrogels Improves Cardiac Function and Angiogenesis Following Infarction. Tissue Eng Part A. 2015. (In press).

    • McCreedy, D.A., Wilems, T.S., Xu, H., Butts, J.C., Brown, C.R., Smith, A.W., Sakiyama-Elbert, S.E. Survival, differentiation, and migration of high purity mouse embryonic stem cell-derived progenitor motor neurons in fibrin scaffolds after sub-acute spinal cord injury. Biomaterials Science. 2014; 2: 1672-1682.

    • Smith, A.W., Hoyne, J.D., Nguyen, P.K., McCreedy, D.A., Aly, H. Efimov, I.R., Rentschler, S., Elbert, D.L. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly (ethylene glycol) (PEG) hydrogels. Biomaterials. 2013; 34: 6559-6571.

    • Nguyen, P.K., Snyder, C.G., Shields, J.D., Smith, A.W., Elbert, D.L. Clickable Poly- (ethylene glycol) Microsphere Based Cell Scaffolds. Macromolecular Chemistry and Physics. 2013; 8: 948-956.

    • Smith, A.W., Segar, C.E., Nguyen, P.K., MacEwan, M.R., Efimov, I.R., Elbert, D.L. Long-term culture of HL-1 cardiomyocytes in modular poly(ethylene glycol) microsphere-based scaffolds crosslinked in the phase-separated state. Acta Biomaterialia. 2012; 8: 31-40.

    • Weiner, A.A., Moore, M.C., Walker, A.H., Shastri, V.P. Modulation of protein release from photocrosslinked networks by gelatin microparticles. Int. J. Pharmaceutics. 2008; 360: 1007-114

    • Tissue Engineering and Regenerative Medicine (TERMIS) Annual Meeting and Exposition in Atlanta, Georgia. 2013. Smith, A.W. et al. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels.

    • Georgia Bio Life Sciences Summit in Atlanta, Georgia. 2013. Smith, A.W. et al. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels.

    • Gordon Conference: Signal Transduction in Engineered Extracellular Matrices in Biddeford, Maine. 2012. Smith, A.W., et al. Fine-tuning porous PEG hydrogels for direct reprogramming of mouse fibroblasts to cardiovascular cells.

    • Tissue Engineering and Regenerative Medicine (TERMIS) Annual Meeting and Exposition in Houston, Texas. 2011. Smith, A.W. et al. Porous poly(ethylene glycol) microsphere-based scaffolds crosslinked around cells while phase separated in dextran solutions exhibit improved elastic properties and enable long term culture of HL-1 cardiomyocytes.

    • Society for Biomaterials Annual Meeting in Seattle, Washington. 2010. Smith, A.W., et al. Production of Highly Porous Bioactive Hydrogels by Self-Assembly of Phase Separated Poly(ethylene glycol) Microspheres in the Presence of Cells.

  • Membership & Affiliations

    • Georgia Bio
    • Women in Bio
    • Tissue Engineering and Regenerative Medicine International Society: Commercialization Thematic Working Group
  • Honors & Awards

    • TI:GER Entrepreneurship Fellowship, Georgia Institute of Technology School of Management
    • Predoctoral Fellowship, American Heart Association
    • National Merit Scholarship, Vanderbilt University